Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Set Identities


Sets: A, B, C

Universal set: I

Complemet: A'

Proper subset: A B

Empty set:

Union of sets: A B

Intersection of sets: A ∩ B

Difference of sets: A    B



1.        A I

2.        A A

3.        A = B if
A B and B A

4.        Empty set
∅ ⊂ A

5.        Union of sets
C = A B = {x│x A or x B}

Figure 1.

6.        Commutativity
A B = B A

7.        Associativity
A (B C) = (A B)C

8.        Intersection of sets
C = A B = {x│x A or x B}

Figure 2

9.        Commutativit
A B = B A

10.    Associativity
A (B C) = (A B)C

11.    Distributivity
A (B C) = (A B) ∩ (A C)
A (B C) = (A B) (A ∩ C)

12.    Idempotency
A ∩ A = A,
A ∪ A = A

13.    Domination
A ∩ =
A ∪ I = I

14.    Identity
A ∅ = A,
A ∩ I = I

15.    Complement
A' = {x ∈ I │ x A}

16.    Complement of Intersection and Union
A A' = I,
A ∩ A' =

17.    De Morgan’ Laws
(A B)' = A' ∩ B',
(A ∩ B)' = A' B'

18.    Difference of Sets
C = B   ⃥ A = {x│x B and x ∉ A}

Figure 3


19.    B    A = B    (A B)

20.    B    A = B A'

21.    A    A =

22.    A    B = A if A ∩ B = ∅.
Figure 4


23.    (A    B) ∩ C = (A ∩ C)    (B ∩ C)

24.    A' = I   A

25.    Cartesian Product

C = A × B = {(x, y)│x A and y B}




Sumber
Labels: Mathematician

Thanks for reading Set Identities. Please share...!

Back To Top