Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Complex Numbers – 1


Natural numbers: n

Imaginary unit: i

Complex number: z

Real part: a, c

Imaginary part: bi, di

Modulus of a complex number: r, r1, r2

Argument of a complex number: φ, φ1, φ2

1.         
i1 = i
i5 = i
i4n + 1 = i
i2 = – 1
i6 = – 1
i4n + 2 = – 1
i3 = – i
i7 = – i
i4n + 3 = – i
i4 = 1
i8 = i
i4n = i

2.  z = a + bi

3.  Complex Plane
                   
                                     Figure



4.  (a + bi) + (c + di) = (a + c) + (b + d)i

5.  (a + bi) – (c + di) = (a – c) + (b – d)i

6.  (a + bi) + (c + di) = (ac – bd) + (ad + bc)i

7.

8.  Conjugate Compex Numbers


9.  a = r cos φ, b = r sin φ



Figure


10. Polar Presentation of Complex Numbers

  a + bi = r (cos φ + i sin φ)

11. Modulus and Argument of a Complex Number


     If a + bi is a complex numbers, then



12. Product in Polar Representation


    z1 z2 = r1 (cos φ1 + i sin φ1) r2 (cos φ2 + i sin φ2)
               = r1r2 [cos (φ1 + φ2) + (i sin (φ1 + φ2)]


13. Conjugate Numbers in Polar Representation
        
    

14. Inverse Complex Numbers in Polar Representation

15. Quotint in Polar Representation








16. Power of a Complex Numbers
         zn = [r (cos φ + i sin φ)]n = rn [cos (nφ) + i sin (nφ)]


17. Formula “De Moivre”

  (cos
φ + i sin φ)n = cos (nφ) + i sin (nφ)

18. Nth Root of a Complex Numbers

  

where
k = 0, 1, 2, ... , n – 1.

19. Euler’s Formula
  eix = cos x + i sin x




Sumber
Labels: Mathematician

Thanks for reading Complex Numbers – 1. Please share...!

Back To Top