Natural numbers:
n
Complex number: z
Imaginary part:
bi, di
Modulus of a
complex number: r, r1, r2
Argument of a complex
number: φ, φ1, φ2
1.
i1 = i
|
i5 = i
|
i4n + 1 = i
|
i2
= – 1
|
i6 = – 1
|
i4n + 2 = – 1
|
i3
= – i
|
i7 = – i
|
i4n + 3 = – i
|
i4
= 1
|
i8 = i
|
i4n = i
|
2. z = a + bi
4. (a + bi) + (c + di) = (a + c) + (b + d)i
5. (a + bi) – (c + di) = (a – c) + (b – d)i
6. (a + bi) + (c + di) = (ac – bd) + (ad + bc)i
9. a = r cos φ, b = r sin φ
10. Polar Presentation of Complex Numbers
a + bi = r (cos φ + i sin φ)
= r1r2 [cos (φ1 + φ2) + (i sin (φ1 + φ2)]
13. Conjugate Numbers in Polar Representation
zn = [r (cos φ + i sin φ)]n = rn
[cos (nφ) + i sin (nφ)]
17. Formula “De Moivre”
where
k = 0, 1, 2, ... , n – 1.
19. Euler’s Formula
eix = cos x + i sin x
Sumber
Labels:
Mathematician
Thanks for reading Complex Numbers – 1. Please share...!