Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Analytic Geometry – Plane


Plane

 

Point coordinater: x, y, z, x0, y0, z0, x1, y1, z1, …

Real numbers: A, B, C, D, A1, A2, a, b, c, a1, a2, λ, p, t, …

Normal vectors: 

Direction cosines: cos α, cos β, cos γ

Distance from point to plane: d

 

  • General Equation of a Plane

   Ax + By + Cz + D = 0

 

   The vector  (A, B, C) is normaL to the plane

 

Figure

 

  • Particular Cases of the Equation of a Plane

   Ax + By + Cz + D = 0

 

   If A = 0, the plane is parallel to the x-axis.

   If B = 0, the plane is parallel to the y-axis.

   If C = 0, the plane is parallel to the z-axis.

   If A = 0, the plane lies on the origin.

 

   If A = B, the plane is parallel to the xy-plane.

   If B = C, the plane is parallel to the yz-plane.

   If A = C, the plane is parallel to the xz-plane.

 

 

  • Point Direction Form

   A(x – x0) + B(y – y0) + C(z – z0) = 0,

   Where the point P(x0, y0, z0) lies in the plane, and the vector (A, B, C

   normaL to the  plane

 

Figure

 

 

     


 

Figure

 

  • Three Point Form

      


 

Figure

 

 

  • Normal Form

   x cos α + y cos β + z cos γ – p = 0,

   where p is the perpendicular distance from the origin to the plane, and 

   cos α, cos β, cos γ are the direction cosine of any ine normal to the plane.

 

Figure



Sumber
Labels: Mathematician

Thanks for reading Analytic Geometry – Plane . Please share...!

Back To Top