Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Differential Calculus - Multivariable Functions


Multivariable Functions

 

Functions of two variables: z(x, y), f(x, y), g(x, y), h(x, y)

Arguments: x, y, t

Small changes in x, y, z, respectively: Δx, Δy, Δz.

 

  • First Order Partial Derivatives

   The partial derivative with respect to x


   The partial derivative with respect to y



  • Seconds Order Partial Derivativ
     


  • Chain Rules

   If f (x, y) = g (h, (x, y)) (g is a function of one 

   variable h),   then

   If h (t) = f (x(t), y (t)), then 

   If z = f (x(u, v), y (u, v)), then


  • Small Changes

      


  • Local Maxima and Minima

   f (x, y) has a local maximum at (x0, y0) if 

   f (x, y) ≤ f (x0y0for all (x, y) sufficiently close 

   to (x0, y0).

 

   f (x, y) has a local minimum at (x0, y0) if 

   f (x, y) ≥ f (x0, y0 for all (x, y) sufficiently close 

   to (x0, y0).

 

  • Stationary Points

     


   Local maximum and local minimum occur at station 

   point.

 

  • Saddle Point

   A stationary point which is neither a local maximum 

   nor a local minimum.

 

  • Second Derivative Test for Stationary Points

   Let (x0, y0) be a stationary point.




   If D > 0, fxx (x0, y0) > 0, (x0, y0) is a point of local 

   minimum.

   If D < 0, fxx (x0, y0) < 0, (x0, y0) is a point of local 

   maximum.

   If D = 0, the test fails.

 

  • Tangent Plane

   The equation of the tangent plane to the surface 

   z = f (x, y) at (x0, y0, z0) is

   z – z0 = fx (x0, y0) (x – x0) + fy (x0, y0) (y – y0).

 

  • Normal to Surface

   The equation of the normal to the surface z = f (x, y

   at (x0, y0, z0) is





Sumber
Labels: Mathematician

Thanks for reading Differential Calculus - Multivariable Functions. Please share...!

Back To Top