Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Integral Calculus - Improper Integral


Improper Integral

   The definite integral is called an improper integral if:

a or b infinite,

 f (x) has one or more points of discontinuity in the 

   interval [a, b].

 

   If f (x) is a continuous function on [a, ∞), then

 


 

Figure

 

  If f (x) is a continuous function on (, b], then

 


 

Figure

 

Note: The improper integrals in 1071, 1072 are convergent if the limits exist and are finite; otherwise the integrals are divergent.

 

 

Figure

 

If for some real number c, both of the integrals in the right side are convergent, then the integralis also convergent; otherwise it is divergent.

 

 

   Comparison Therems

Let f (x) and g (x) be continuous functions on the closed interval [a, ∞). Suppose that 0 ≤ g (x) ≤ f (x) for all x in [a, ∞).

 


   Absolute Convergence

Ifis convergent, then the integralis absolutely convergent.

 

   Discontinuous Integrand

Let f (x) be a function which is continuous on the interval [a, b) but discontinuous at x = b. Then 

 

Figure

 

 

  Let f (x) be a continuous function for all real numbers x in the interval [a, b] except for some point c in (a, b). Then.

 

Figure

 

Sumber
Labels: Mathematician

Thanks for reading Integral Calculus - Improper Integral . Please share...!

Back To Top