Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Series - Alternating Series - Power Series - Differentiation and Integration of Power Series


        The Alternating Serie Test (Leibniz’s Theorem)

Let {an} be a sequence of positive numbers such that 

an + 1 < an for all n.

Then the alternating seriesandboth converge.

 

        Absolute Convergence

•  A seriesis absolutely convergent if the series 

   is convergent.

•  If the seriesis absolutely convergent then it is convergent.

 

        Conditional Convergence

A seriesis conditionally convergent if the series is convergent but is not absolutely convergent.

 

 

Power Series

 

Real numbers: x, x0

Power series:

Whole number: n

Radius of Convergence: R

 

        Power Series in x

   


        Power Series in (x – x0)

   

 

        Interval of Convergence

The set of those values of x for which the function

is convergent is called the interval of convergence.

 

        Radius of Convergence

If the interval of convergence is (x0 – R, x0 + R) for some R ≥ 0, the R is called the radius of convergence. It is given as

   .

 

Differentiation and Integration of Power Series

 

Continuous function: f(x)

Power series: 

Whole number: n

Radius of Convergence: R

 

        Differentiation of Power Series

Let
 for
|x| < R.

Then, for |x| < R, f(x) is continuous, the derivative f’(x) exists and

   

 

        Integration of Power Series

Letfor |x| < R.

Then, for |x| < R, f(x) is indefinite integralexists and

   


 


Sumber

Labels: Mathematician

Thanks for reading Series - Alternating Series - Power Series - Differentiation and Integration of Power Series . Please share...!

Back To Top