Born :
1526, Damascus, Ottoman Empire
Died : 1585,
Istanbul, Ottoman Empire
Fields : Mathematics,
astronomy, engineering, mechanics, optics, natural philosophy.
Taqi al-Din Muhammad ibn Ma'ruf ash-Shami
al-Asadi (Arabic: تقي الدين محمد بن
معروف الشامي, Ottoman Turkish: تقي الدين محمد بن معروف الشامي السعدي)
was an Ottoman polymath active in Cairo and Istanbul. He was the author of more
than ninety books on a wide variety of subjects, including astronomy, clocks,
engineering, mathematics, mechanics, optics and natural philosophy. In 1574 the
Ottoman Sultan Murad III invited Taqī ad-Dīn to build the Constantinople observatory.
Using his exceptional knowledge in the mechanical arts, Taqī ad-Dīn constructed
instruments like huge armillary and mechanical clocks that he used in his
observations of the Great Comet of 1577. He also used European celestial and
terrestrial globes that were delivered to Istanbul in gift-exchange. The major
work that resulted from his work in the observatory is titled "The tree of
ultimate knowledge [in the end of time or the world] in the Kingdom of the
Revolving Spheres: The astronomical tables of the King of Kings [Murād
III]" (Sidrat al-muntah al-afkar fi malkūt al-falak al-dawār– al-zij
al-Shāhinshāhi). The work was prepared according to the results of the
observations carried out in Egypt and Istanbul in order to correct and complete
Ulugh Beg’s Zij as-Sultani. The first 40 pages of the work deal with
calculations, followed by discussions of astronomical clocks, heavenly circles,
and information about three eclipses which he observed at Cairo and Istanbul.
For corroborating data of other observations of eclipses in other locales like
Daud ar-Riyyadi (David the Mathematician), David Ben-Shushan of Salonika.
As a polymath, Taqī al-Dīn wrote numerous books on astronomy, mathematics, mechanics, and theology. His method of finding coordinates of stars were reportedly so precise that he got better measurements than his contemporaries, Tycho Brahe and Nicolas Copernicus. Brahe is also thought to have been aware of al-Dīn's work. Taqī Ad-Dīn also described a steam turbine with the practical application of rotating a spit in 1551. He worked on and created astronomical clocks for his observatory. Taqī Ad-Dīn also wrote a book on optics, in which he determined the light emitted from objects, proved the Law of Reflection observationally, and worked on refraction.
Work in the
observatorium of Taqi al-Din
Biography
Taqī al-Dīn was born in Damascus and lived from 1526 –
1585. His ethnicity has been described as Ottoman Arab, Ottoman Turkish and
Syrian. In his treatise, titled "Rayḥānat al-rūḥ", Taqī al-Dīn
himself claimed descent from the Ayyubids tracing his lineage back to the
Ayyubid prince Nasir al-Din Mankarus ibn Nasih al-Din Khumartekin who ruled Abu
Qubays in Syria during the 12th century. The Encyclopaedia of Islam makes no
mention of his ethnicity, simply calling him, "..the most important
astronomer of Ottoman Turkey".
Taqi ad-Din's education started in theology and as he went on he would gain an interest in the rational sciences. Following his interest, he would begin to study the rational sciences in Damascus and Cairo. During that time he studied alongside his father Maʿruf Efendi. Al-Dīn went on to teach at various madaris and served as a qadi, or judge, in Palestine, Damascus, and Cairo. He stayed in Egypt and Damascus for some time and while he was there he created work in astronomy and mathematics. His work in these categories would eventually become important. He became a chief astronomer to the Sultan in 1571 a year after he came to Istanbul.
Taqī al-Dīn maintained a strong bond with the people from the Ulama and statesmen. He would pass on information to Sultan Murad III who had an interest in astronomy but also in astrology. The information stated that Ulugh Beg Zij had particular observational errors. Al-Dīn made a suggestions that those errors could be fixed if there were new observations made. He also suggested that an observatory should be created in Istanbul to make that situation easier. Murad III would become a patron of the first observatory in Istanbul. He preferred that construction for the new observatory begin immediately. Since Murad III was the patron he would assist with finances for the project.
Taqī al-Dīn continued his studies at the Galata Tower while this was going on. His studies would continue until 1577 at the nearly complete observatory, which was called Dar al-Rasad al-Jadid. This new observatory contained a library that held books which covered astronomy and mathematics. The observatory, built in the higher part of Tophane in Istanbul, was made of two separate buildings. One building was big and the other one was small. Al-Dīn possessed some of the instruments used in the old Islamic observatories. He had those instruments reproduced and also created new instruments which would be used for observational purposes. The staff at the new observatory consisted of sixteen people. Eight of them were observers or rasids, four of them were clerks, and the last four were assistants.
Taqī al-Dīn approached his observations in a creative way and created new answers to astronomical problems due to the new strategies he created along with the new equipment he created as well. He would go on to create trigonometric tables based on decimal fractions. These tables placed the ecliptic at 23° 28’ 40". The current value was 23° 27’ showing that al-Dīn's instruments and methods were more precise. Al-Dīn used a new method to calculate solar parameters and to determine the magnitude of the annual movement of the sun’s apogee as 63 seconds. The known value today is 61 seconds. Copernicus came up with 24 seconds and Tycho Brahe had 45 seconds but al-Dīn was more accurate than both.
The main purpose behind the observatory was to cater to the needs of the astronomers and provide a library and workshop so they could design and produce instruments. This observatory would become one of the largest ones in the Islamic world. It was complete in 1579. It would go on to run until January 22, 1580 which is when it was destroyed. Some say religious arguments was the reason why it was destroyed, but it really came down to political problems. A report by the grand vizier Sinan Pasha to Sultan Murad III goes into how the Sultan and the vizier attempted to keep Taqī Ad-Dīn away from the ulama because it seemed like they wanted to take him to trial for heresy. The vizier informs the sultan that Taqī Ad-Dīn wanted to go to Syria regardless of the sultan's orders. The vizier also warned the sultan that if Taqī Ad-Dīn went there, there is a possibility that he would be noticed by the ulama who would take him to trial.
Despite Taqī al-Dīn’s originality, his influence seemed to be limited. There are only a small number of surviving copies of his works so they were not able to reach a wide variety of people. His commentaries that are known are very few. However, one of his works and a piece of a library that he owned reached western Europe pretty quickly. This was due to the manuscript collecting efforts of Jacob Golius, a Dutch professor of Arabic and mathematics at Leiden University. Golius traveled to Istanbul in the early seventeenth century. In 1629 he wrote a letter to Constantin Huygens that talks about seeing Taqī Ad-Dīn’s work on optics in Istanbul. He argued that he was not able to get ahold of it from his friends even after all his efforts. He must have succeeded in acquiring it later since Taqī al-Dīn’s work on optics would eventually make it to the Bodleian Library as Marsh 119. It was originally in the Golius collection so it is clear that Golius eventually succeeded at acquiring it.
According to Salomon Schweigger, the chaplain of Habsburg ambassador Johann Joachim von Sinzendorf, Taqi al-Din was a charlatan who deceived Sultan Murad III and had him spent enormous resources.
The
Constantinople Observatory
Taqī al-Dīn was both
the founder and director of the Constantinople Observatory, which is also
known as the Istanbul Observatory. This observatory is frequently said to be
one of Taqī al-Dīn's most important contributions to sixteenth-century Islamic
and Ottoman astronomy. In fact, it is known as one of the largest
observatories in Islamic history. It is often compared to Tycho Brahe’s
Uraniborg Observatory, which was said to have been the home to the best
instruments of its time in Europe. As a matter of fact, Brahe and Taqī al-Dīn
have frequently been compared for their work in sixteenth-century
astronomy. The founding of the Constantinople Observatory began when Taqī
al-Dīn returned to Istanbul in 1570, after spending 20 years in Egypt
developing his astronomy and mathematical knowledge. Shortly after his
return, Sultan Selīm II appointed Taqī al-Dīn as the head astronomer (Müneccimbast),
following the death of the previous head astronomer Muṣṭafā ibn ҁAlī al-Muwaqqit in 1571. During the early years of
his position as head astronomer, Taqī al-Dīn worked in both the Galata
Tower and a building overlooking Tophane. While working in these
buildings, he began to gain the support and trust of many important Turkish
officials. These newfound relationships lead to an imperial edict in 1569
from Sultan Murad III, which called for the construction of the
Constantinople Observatory. This observatory became home to many important
books and instruments, as well as many renowned scholars of the time. While
there is not much known of the architectural characteristics of the building,
there are many depictions of the scholars and astronomical instruments present
in the observatory. However, due to political conflict, this observatory was
short lived. It was closed 1579 and, was demolished entirely by the state
on 22 January 1580, only 11 short years after the imperial edict for its
construction.
Politics
The rise and fall of
Taqī al-Dīn and his observatory depended on political issues that surrounded
him. Due to his father's occupation as a professor at the Damascene College of
law Taqī al-Dīn spent much of his life in Syria and Egypt.
During his trips to Istanbul he was able to make connections with
many scholar-jurists. He was also able to use the private library of the Grand
Vizier of the time, Semiz Ali Pasha. He then began working under
Sultan Murad III's new Grand Vizier’s, private mentor Sa’deddin.
Continuing his research on observations of the heavens while
in Egypt Taqī al-Dīn used the Galata tower and Sa’deddin’s private
residence. Although Murad III was the one who commanded an
observatory to be built it was actually Sa’deddin who brought the
idea to him knowing about his interest in science. The Sultan ultimately
would provide Taqī al-Dīn with everything he needed from financial assistance for
the physical buildings, to intellectual assistance making sure he had easy
access to many types of books he would need. When the Sultan decided to create
the observatory he saw it as a way to show off the power his monarchy had
besides just financially backing it. Murad III showed his power by
bringing Taqī al-Dīn and some of the most accomplished men in the field of
astronomy together to work towards one goal and not only have them work well
together but also make progress in the field. Murad III made sure that
there was proof of his accomplishments by having his court historiographer
Seyyid Lokman keep very detailed records of the work going on at the
observatory. Seyyid Lokman wrote that his sultan's monarchy was much more
powerful then others in Iraq, Persia, and Anatolia. He also
claimed that Murad III was above other monarchs because the results
of the observatory were new to the world and replaced many others.
Instruments
Used at the Observatory
Taqī al-Dīn used a
variety of instruments to aid in his work at the observatory. Some were
instruments that were already in use from European Astronomers while others he
invented himself. While working in this observatory, Taqī al-Dīn not only
operated many previously created instruments and techniques, but he also
developed numerous new ones. Of these novel inventions, the
automatic-mechanical clock is regarded as one of the most important developed
in the Constantinople Observatory.
· Each of these
instruments were first described by Ptolemy.
· An Armillary
Sphere- A model of celestial bodies with rings that represent longitude and
latitude.
·
A Paralactic Ruler- also
known as a Triquetrum was used to calculate the altitudes
of celestial bodies.
·
An Astrolabe-
Measures the inclined position of celestial bodies.
· These instruments were
created by Muslim astronomers.
· A Mural quadrant, a
type of mural Instrument for measuring angles from 0 to 90 degrees.
· An Azimuthally Quadrant
· Each of the instruments
were created by Taqi al-Din to use for his own work.
· A Parallel ruler
· A Ruler Quadrant or
Wooden Quadrant an instrument with two holes for the measurement of apparent
diameters and eclipses.
· A mechanical clock with
a train of cogwheels which helped measure the true ascension of the stars.
· Muşabbaha bi'l-menatık,
an instrument with chords to determine the equinoxes, invented to replace the
equinoctial armillary.
· A Sunaydi Ruler which
was apparently a special type of instrument of an auxiliary nature, the
function of which was explained by Alaeddin el-Mansur
Contributions
Clock
Mechanics
Rise of
Clock use in the Ottoman Empire
Before the sixteenth
century European mechanical clocks were not in high demand. This lack
of demand was brought on by the extremely high prices and the lack of
preciseness needed by the population who had to calculate when they would have
to have the prayer. The use of hourglasses, water clocks, and sundials was more
than enough to meet their needs.
It was not until around
1547 that the Ottomans started creating a high demand for them. Initially,
it was started by the gifts brought by the Austrians but this would end up
starting a market for the clocks. European clockmakers began to create clocks
designed to the tastes and needs of the Ottoman people. They did this by
showing both the phases of the moon and by utilizing Ottoman numbers.
Taqī
al-Dīn's Work
During this high demand
for mechanical clocks, Taqī al-Dīn was asked by the Grand Vizier to
create a clock that would show exactly when the call to prayer was. This would
lead him to write his first book on the construction of mechanical clocks
called, “al-Kawakib al-Durriya fi Bengamat al-Dawriyya" in 1563 A.D. which
he used throughout his research at the short-lived observatory. In his
writing, Taqī al-Dīn was said to have been influenced by the Greek God Hermes.
He believed that it would be advantageous to bring a "true hermetic and
distilled perception of the motion of the heavenly bodies." In order
to get a better understanding of how clocks ran Taqī al-Dīn took the time to
gain knowledge from many European clock makers as well as going into the
treasury of Semiz Ali Pasha and learning anything he could from the
many clocks he owned.
Types
of clocks Examined
Of the clocks in
the Grand Vizier's treasury Taqī al-Dīn examined three different
types. Those three were weight driven, spring driven, and clocks with lever
escapement. In his writing, he spoke of these three types of watches but he
also made comments on pocket watches and astronomical ones. As Chief
Astronomer Taqī al-Dīn created a mechanical astronomical clock. This clock
was made in order for him to be able to take more precise measurements from his
observations done at the Constantinople observatory. As stated above the
creation of this clock was thought to be one of the most important astronomical
discoveries of the sixteenth century. According to his writing in his
book In the nabk tree of the extremity of thoughts Taqī al-Dīn
constructed a mechanical clock with three dials which show the hours, minutes,
and seconds, with each minute consisting of five seconds. After this clock
it is not known whether Taqī al-Dīn's work in mechanical clocks was ever
continued since much of the clock making after that time in the Ottoman
Empire was taken over by Europeans.
Steam
In 1551 Taqī al-Dīn
described a self-rotating spit that is important in the history of
the steam turbine. In Al-Turuq al-samiyya fi al-alat al-ruhaniyya (The
Sublime Methods of Spiritual Machines) al-Dīn describes this machine as well as
some practical applications for it. The spit is rotated by directing steam into
the vanes which then turns the wheel at the end of the axel. Al-Dīn also
described four water-raising machines. The first two are animal driven water
pumps. The third and fourth are both driven by a paddle wheel. The third is a
slot-rod pump while the fourth is a six-cylinder pump. The vertical pistons of
the final machine are operated by cams and trip-hammers, run by the paddle
wheel. The descriptions of these machines predates many of the more modern
engines. The screw pump, for example, that al-Dīn describes predates Agricola,
whose description of the rag and chain pump was published in 1556. The two pump
engine, which was first described by al-Jazarī, was also the basis of the
steam engine.
Optics
Taqī al-Dīn, being an
astronomer, was very familiar with optics and the behavior of light. From this
he wrote a book called Takîyüddîn'in Optik Kitabi or Taqī al-Dīn's Book of
Optics. This book is written in three chapters. The first deals with the
nature of vision, the second with reflection and then concludes with an
understanding of refraction. He made a special note that his book was based on
experimental evidence rather than being a conclusion drawn from previous works
of literature. He also made a note that light is the same from all sources,
contradicting Ibn al-Haytham.
Sight
Reflection
In the early Greek
world, there were two competing ideas of sight. One that rays emanated from the
eyes onto an object and another that and object emanated light and our eyes
only observed it. Both sides had their champions, however, Taqī al-Dīn was able
to show experimentally that light emanates from an object and is then collected
by our eyes. Taqī Ad-Dīn argued that light would take too long to travel
between us and the heavens to see the sphere that held the stars. Since we can
see the stars at night without any delay it is clear that light comes from them
and not from something we produce. From this, he also argued that the color of
the light is thus contained within the light of the object. He also argued that
while light, emanating from a single point, may travel outward in a sphere the
individual rays of light travel in straight lines. Finally, he showed that the
color of an object was produced by the reflection and refraction properties of
an object.
Reflection
Reflection itself was
nothing new to the Islamic world and had been figured out for quite some time.
However, any optics book that left out a section of reflective surfaces would
be considered lacking. To this effect Taqī Ad-Dīn included a section on it. He
noted that rays of light being reflected off a mirror will propagate is a
spherical form. As such, reflections of rays are a geometrical problem. He also
found that the incident ray, the reflected ray and the normal all lie in the
same plane. Taqī Ad-Dīn also provided observational evidence to the Law of
Reflection, that is the angle of incidence and the angle of reflection are the
same. The rays of light being emitted were also found to have the same color as
the reflective surface.
Refraction
Refraction
Like reflection,
refraction had been known about for some time. It was, however, a much more
complicated problem that required further work. It was known that refracted
light propagates in a spherical shell much as reflected light does and that it
also takes on the color of the material through which it is traveling. It was
also known that if a ray of light is traveling and goes from one medium to
another that its angle will bend in a manner related to the density of the two
materials. Like reflections the incident ray, the refracted ray and the normal
all lie in the same place, however, the angle of refraction is always less than
the angle of incidence. The only exceptions to this are perpendicular rays
which do not in fact refract. Taqī al-Dīn did discover though that “the
difference between the refraction angles of different incident rays is less than
the difference between the angles of incidence.” He also noted that the
ratio of incident angle to refraction angle of the larger incident is greater
than the same ratio for the smaller incident. These are pretty much still our
modern rules for optics and Taqī al-Dīn even tried to formulate Snell's
law although he was unsuccessful.
Astronomy
- Sidrat muntahā al-afkār fī malakūt al-falak
al-dawwār (al-Zīj al-Shāhinshāhī): this is
said to be one of Taqī al-Dīn’s most important works in astronomy. He completed
this book on the basis of his observations in both Egypt and Istanbul. The
purpose of this work was to improve, correct, and ultimately complete Zīj-i
Ulugh Beg, which was a project devised in Samarkand and furthered in
the Constantinople Observatory. The first 40 pages of his writing focus on
trigonometric calculations, with emphasis on trigonometric
functions such sine, cosine, tangent, and cotangent.
- Jarīdat al-durar wa kharīdat
al-fikar is a zīj that is said to be Taqī al-Dīn’s
second most important work in astronomy. This zīj contains the first recorded
use of decimal fractions and trigonometric functions in astronomical
tables. He also gives the parts of degree of curves and angles in decimal
fractions with precise calculations.
- Dustūr al-tarjīḥ li-qawā ҁ id al-tasṭīḥ is another
important work by Taqī al-Dīn, which focuses on the projection of a sphere into
a plane, among other geometric topics.
- Taqī al-Din is also
accredited as the author of Rayḥānat al-rūḥ fī rasm al-sā ҁ āt ҁ alā
mustawī al-suṭūḥ, which discusses sundials and their
characteristics drawn on a marble surface.
Clocks
and Mechanics
- al-Kawākib al-durriyya
fī waḍ ҁ al-bankāmāt al-dawriyya was
written by Taqī al-Dīn in 1559 and addressed mechanical-automatic clocks. This
work is considered the first written work on mechanical-automatic clocks in the
Islamic and Ottoman world. In this book, he accredits Alī Pasha as a
contributor for allowing him to use and study his private library and
collection of European mechanical clocks.
- al-Ṭuruq al-saniyya
fī al-ālāt al-rūḥāniyya is a second book on mechanics by
Taqī al-Dīn that emphasizes the geometrical-mechanical structure of clocks,
which was a topic previously observed and studied by Banū
Mūsā and Ismail al-Jazari (Abū al-ҁIzz al-Jazarī).
Physics
and Optics
- Nawr ḥadīqat al-abṣar wa-nūr
ḥaqīqat al-Anẓar was a work of Taqī al-Dīn that discussed
physics and optics. This book discussed the structure of light, the
relationship between light and color, as well as diffusion and global
refraction.
Sumber
Labels:
Mathematician
Thanks for reading Biografi Taqi ad-Din Muhammad ibn Ma'ruf. Please share...!