Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Variables on Both Sides


Many equations contain variables on both sides. To solve these equations, first use the Addition or Subtraction Property of Equality to write an equivalent equation that has all of the variables on one side. Then solve.

 

Example

Solve each equation. Check your solution.

 

1.     5x = x – 12

 

Alternative Solutions :

 

 5x = x – 12          Original equation

5x – x = x – 12 – x    Subtract x from each side.

           4x = 12                Simplify.

                Divide each side by 4.

             x = 3               Simplify.

 

Check:

     5x = x – 12           Original equation

5(3) 3 12        Replace x with 3.

   15 = 15     ü

 

 











You can solve an equation with a variable on both sides to determine when a quantity that is increasing and one that is decreasing will be the same.

 

Example

Sports Link

3.  The 2003 World Championship 100-meter dash times were 10.07 seconds for men and 10.85 seconds for women. If each year the men’s times decrease 0.08 second and the women’s times decrease 0.14 second, when would they have the same winning times?

 

Alternative Solutions :

 

Let y represent the number of years. Write an equation.

 

Words                   

Variables                        10.07 – 0.08y                10.85 – 0.14y

Equation                      10.07 – 0.08y = 10.85 – 0.14y          

                                                 Write an equation.

10.07 – 0.08y + 0.14y = 10.85 – 0.14y + 0.14y    

              Add 0.14y to each side.

10.07 + 0.06y = 10.85                       

              Simplify.

10.07 – 10.07 + 0.06y = 10.85 – 10.07      

              Subtract 10.07 from each side.

0.06y = 0.78                     Simplif

                 y = 13                        Simplify.

 

At these rates, men and women have the same times 13 years after 2003, or in 2016.

 

Some equations have no solution. This means that there is no value for the variable that will make the equation true. Other equations may have every number as the solution. An equation that is true for every value of the variable is called an identity.

 

Example

 

4.     Solve each equation.

5x + 3 = 8 + 5x

 

Alternative Solutions :

 

   5x + 3 = 8 + 5x                      Original equation

5x + 3 – 5x = 8 + 5x – 5x              Subtract 5x from each side.

 3 = 8                                       False statement

 

The equation has no solution. 3 = 8 is never true.

 

5.     3 + 3t – 5 = 3t – 2

 

Alternative Solutions :

 

3 + 3t – 5 = 3t – 2                        Original equation

 3t – 2 = 3t – 2                         Simplify.

 

The equation is an identity. 3t – 2 = 3t – 2 is true for all values of t.

 

 

Sumber

Labels: Mathematician

Thanks for reading Variables on Both Sides. Please share...!

Back To Top