Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Multiplication and Division with Negative Numbers - 1

Negating a variable does not automatically mean that the quantity will be negative: –x means ‘‘the opposite’’ of x. We cannot conclude that –x is a negative number unless we have reason to believe x itself is a positive number. If x is a negative number, –x is a positive number. (Although in practice we verbally say ‘‘negative x’’ for ‘‘–x’’ when we really mean ‘‘the opposite of x’’).

The same rules apply when multiplying ‘‘negative’’ variables.

 

Examples

3(5x) = –15x                      5(–x) = – 5x

12(–4x) = 48x                    –x (–y) = xy

2x(3y) = 6xy                    x(–y) = – xy

16x(–4y) = 64xy                4(–1.83x)(2.36y) = – 17.2752xy

3(–x) = 3x

 

Practice

1.      18(–3x) =

2.      4(2x)(–9y) =

3.      28(–3x) =

4.      –5x(–7x) =

5.      –1(–6)( –7x) =

6.      1.1x(2.5y) =

7.      8.3(4.62x) =

8.      2.6(13.14(–6x) =

9.      0.36(–8.1x)( –1.6y) =

10. 4(–7)(2.1x)y =

 

Solutions

1.      18(–3x) = –54x

2.      4(2x)(–9y) = 72xy

3.      28(–3x) = –84x

4.      –5x(–7x) = 35xy

5.      –1(–6)( –7x) = –42x

6.      1.1x(2.5y) = 2.75xy

7.      8.3(4.62x) = –38.346x

8.      2.6(13.14(–6x) = –204.984x

9.      0.36(–8.1x)( –1.6y) = 4.6656xy

10. 4(–7)(2.1x)y = –58.8xy

 

 

“Sumber Informasi”

Labels: Mathematician

Thanks for reading Multiplication and Division with Negative Numbers - 1. Please share...!

Back To Top