Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Analytic Geometry – Hyperbola


Hyperbola

 

Transverse axis: a

Conjugate axis: b

Foci: F1(– c, 0), F2(c, 0)

Distance between the foci: 2c

Eccentricity: e

Asymptotes: s, t

Real number: A, B, C, D, E, F, t, k

 

 

  • Equation of a Hyperbola (Standar Form)

      


 

Figure

 

  • r1 – r2= 2a,

    where r1, r2 are distances from any point P(x, y) on the hyperbola

     to the two foci.

Figure

 

  • Equation of a Asymptoter

     

  • c2 = a2 + b

  • Eccentricity

      

  • Equation of Directricer

     

  • Parametric Equation of the Right Branch of a Hyperbola

      

  • General Form

    Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

   Where B24AC > 0 


  • General Form with Axes Parsllel to the Coordinate Axes

    Ax2 + Bxy + Dx + Ey + F = 0,

    Where AC < 0

 

  • Asymptotic Form

     


   In this case, the asymptotes have equation x = 0 and y = 0.

 

Figure

 

 

Sumber
Labels: Mathematician

Thanks for reading Analytic Geometry – Hyperbola . Please share...!

Back To Top