Contoh soal
Diketahui f(x) = 2x – 1, g(x) = x2
+ 2.
a. Tentukan (g ∘
f)(x).
b. Tentukan (f ∘
g)(x).
c. Apakah berlaku sifat komutatif: g ∘ f = f ∘ g?
Penyelesaian
a. (g ∘
f)(x) = g(f(x))
= g(2x – 1)
= (2x – 1) 2 + 2
= 4x2 – 4x + 1 + 2
= 4x2 – 4x + 3
b. (f ∘
g)(x) = f(g(x))
= f(x2 + 2)
= 2(x2 + 2) – 1
= 4x2 + 4 – 1
= 4x2 + 3
c. Tidak berlaku sifat
komutatif karena g ∘ f ≠ f ∘
g.
Contoh soal
Diketahui f(x) = x2, g(x)
= x – 3, dan h(x) = 5x.
a. Tentukan (f ∘
(g ∘ h))(x).
b. Tentukan ((f ∘
g) ∘ h)(x).
c. Apakah f ∘
(g ∘ h) = (f ∘ g) ∘ h,
mengapa?
Penyelesaian
a. (f ∘
(g ∘ h))(x) = ….
Misal p(x) = (g ∘ h)(x)
= g(h(x))
= g(5x)
= 5x – 3
Soalnya menjadi
(f ∘ (g ∘ h)(x))
= (f ∘ p)(x)
= f(p(x))
= f(5x – 3)
= (5x – 3)2
= 25x2 – 30x + 9
b. ((f ∘
g) ∘ h)(x) = ….
Misal s(x) = (f ∘ g)(x)
= f(g(x))
= f(x – 3)
= (x – 3)2
Soalnya menjadi:
((f ∘ g) ∘ h)(x)
= (s ∘ h)(x)
= s(h(x))
= s(5x)
= (5x – 3)2
= 25x2 – 30x + 9
c. Ya, (f ∘
(g ∘ h))(x) = ((f ∘
g) ∘ h)(x) sebab berlaku sifat asosiatif.
Contoh soal
Diketahui f(x) = 5x – 2 dan I(x)
= x. Buktikan I
∘
f = f ∘ I = f.
Bukti
(I ∘ f)(x) = I(f(x))
= I(5x – 2)
= 5x – 2
(f ∘ I)(x) = f(I(x))
= f(x)
= 5x – 2
Tampak bahwa I ∘ f = f ∘
I = f (terbukti).
Contoh soal
Diketahui dua buah fungsi yang dinyatakan dengan rumus f(x)
= 3x – 1 dan g(x) = x2 + 4.
Tentukanlah nilai dari fungsi-fungsi komposisi berikut.
a. (g ∘
f)(1)
b. (f ∘
g)(–2)
c. (g ∘
f)(–3)
Penyelesaian
Cara 1
a. (g ∘
f)(x) = g(f(x))
= g(3x – 1)
= (3x – 1)2 + 4
= 9x2 – 6x + 1 + 4
= 9x2 – 6x + 5
(g ∘ f)(1) = 9 ⋅ 12 – 6⋅ 1 + 5
= 9 – 6 + 5 = 8
b. (f ∘
g)(–2) = f(g(x))
= f(x2 + 4)
= 3(x2 + 4) – 1
= 3x2 + 12 – 1
= 3x2 + 11
(f ∘ g)(–2) = 3(–2)2 + 11
= 3⋅ 4 + 11
= 12 + 11 = 23
c. (g ∘
f)(x) = 9x2 – 6x + 5
(g ∘ f)(–3) = 9(–3)2 – 6 (–3) + 5
= 81 + 18 + 5
= 104
Cara 2
a. (g ∘
f)(1) = g(f(1))
= g(3 ⋅ 1 – 1)
= g(2)
= 22 + 4 = 8
b. (f ∘
g) (–2) = f(g(–2))
= f((–2)2 + 4)
= f(8)
= 3⋅
8 – 1 = 23
c. (g ∘
f)(–3) = g(f(–3))
=
g(3 (–3) – 1)
= g(–10)
= (–10)2 + 4 = 104
Thanks for reading Latihan Fungsi Komposisi . Please share...!