Contoh
Sumber
Jika g(x) = (x + 1) dan (f ∘ g)(x)
= x2 + 3x + 1, maka f (x) = . . .
A.
x2 + 5x + 5
B.
x2 + x – 1
C.
x2 + 4x + 3
D.
x2 + 6x + 1
E.
x2 + 3x – 1
Jawab :
(f ∘ g)(x)
= f (g(x))
x2 + 3x + 1 = f (x + 1)
(x + 1)2 + (x + 1) – 1 = f
(x + 1)
f (x +
1) = (x + 1)2 + (x + 1) – 1
f(x) = x2 + x – 1 .
Jawaban : B
Contoh
Jika (g ∘ f )(x) = 4x2 + 4x
dan g(x) = x2 – 1, maka f (x –
2) adalah . . .
A.
2x + 1
B.
2x – 1
C.
2x – 2
D.
2x + 3
E.
2x – 5
Jawab :
Diketahui:
(g ∘ f ) (x) = 4x2 + 4x
g(x) = x2
– 1
(g ∘ f ) (x) = g (f (x))
4x2 + 4x = f (x)2 – 1
f (x)2 =
4x2 + 4x 1
f (x)2 =
(2x + 1)2
f(x) = 2x + 1
Jadi, f (x – 2) = 2(x – 2) + 1
= 2x – 4 + 1
= 2x –
3 .
Jawaban : C
Contoh
Jawab :
Diketahui:
⇒
Misalkan g(x) = y
(f ∘ g) (x) = f (g (x)) = f (y)
Sehingga,
Jawaban : A
Contoh
Jawab :
2yx – y = 5x + 3
2yx – 5x = 3 + y
x (2x – 5) = 3 + y
Jawaban : A
Contoh
A.
¼
B.
½
C.
1
D.
2
E.
4
Jawab :
Misalkan : (g ∘ f) (x) = y
y√x + y = √x
y√x – √x = – y
√x (y
– 1)2 = y2
Jawaban : E
Sumber
Labels:
Matematika
Thanks for reading Latihan - Fungsi Komposisi dan Fungsi Invers. Please share...!