Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Integral Calculus - Double Integral 1


Double Integral 1

 

  Iterated Integral and Fubini’s Theorem

 

for a region of type I,

R = {(x, y) | a x b, p(x) yq(x)}.

 

Figure


 

for a region of type II,

R = {(x, y) | u(y) ≤ xv(y), c y d}.

 

Figure

 

  Double Integral over Rectangular Regions

If R is the rectangular region [a, b] × [c, d], then

 

 

In the special case where the integrand f(x, y) can be written as g(x, y) h(y) we have

 

 

  Change of Variables

 

Is the jacobian formations (x, y) → (u, v), and S is the pullback of R which can be computed by x = x (u, v), y = y (u, v) into the definition of R.

 

  Polar Coordinater

x = r cos θ, y = r sin θ

 

Figure

 

   Double Integral in Polar Coordinates

The Differential dxdy for Polar Coordinates is

  


Let the region R is determined as follows:

0 ≤ g(θ) ≤ h(θ), α ≤ θ ≤ β, where β – α ≤ 2π.

Then

 

 

Figure

 

If the region R is the polar rectangle given by

0 ≤ a r b, α ≤ θ ≤ β, where β – α ≤ 2π.

  


 

Figure

 


Sumber
Labels: Mathematician

Thanks for reading Integral Calculus - Double Integral 1. Please share...!

Back To Top