Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Integral Calculus - Triple Integral


Triple Integral

 

Function of rhree variable: f(x, y, z), g(x, y, z), …

Triple integrals:

Riemann sum: 

Small hanges: Δxi , Δyj , Δzk

Limits of integration: G, T, S

Cylindrical coordinates: r, θ, z

Spherical coordinates: r, θ, φ

Volume of a solid: V

Mass of a solid: m

Density: μ(x, y, z)

Coordinates of center of mass: 

First moments: Mxy, Myz, Mxz

Moments of inertia: Ixy, Iyz, Ixz, Ix, Iy, Iz, I0


   The triple integral over a parallelepiped 

   [a, b] × [c, d] × [r, s] is defined to be

    

  Where (ui, vj, wk) is some point in the parallelepiped

  (xi –1 , xi ) × (yj–1 , yi) × (zk–1 , zi), and Δx= xixi –1, 

   Δyj = yj yj –1 , Δz= zk zk –1.



  • If f(x, y, z) ≥ 0 and G and T are nonoverlapping basic region, then
      

  Here G T is the union of the regions G and T.

 

  • Evauation of Triple Integral by Repeated Integral

   If the solid G is the set of points (x, y, z) such that

   (x, y) R, χ1 (x, y) z ≤ χ2 (x, y), then

   Where R is profection of G onto the xy-plane.

      

   where R is projection of G onto the xy-plane.

 

  If the solid G is the set of points (x, y, z) such 

  that a xb, φ1 (x) y ≤ φ2 (x), 

  χ1 (x, y) ≤ z ≤ χ2 (x, y), then

  

  • Triple Integral over Parallelepiped

   If G is a parallelepiped [a, b] × [c, d] × [r, s], then

   

   In the special case where the integrand f(x, y, z) can be 

   written as g(x) h(y) k(z) we have  




Sumber
Labels: Mathematician

Thanks for reading Integral Calculus - Triple Integral . Please share...!

Back To Top