Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Integral Calculus - Surface Integral 1


Surface Integral 1

 

 

      , then the latter formula can 
       be written as

     

  Where (u, v) ranges over some domain D(u, v) of 

  the uv-plane.

 

  • Divergence Theorem

,

   Where

      

   is a vector field whose components P, Q, and R 

   have continuous partial derivatives,

      

   is the divergence of, also denoted

   The symbolindicates that the surface integral 

   is taken over a closed surface.

 

  • Divergence Theorem in Coordinate Form

  .

 

  • Stoke’s Theorem

   ,

    where

       


    is a vector field whose components P, Q, and 

    R have continuous partial derivatives,

       


    is the curl of, also denoted.

    The symbolindicates that the line integral is 

    taken over a closed curve.

 

  • Surface Area

      

  • If the surface S is parameteri by the vector

   ,

   Then the surface area is

   ,

   Where D(u, v) is the domain where the surface

   is defined.

 

  • If the surface S is given explicitly by the function z(x, y), then the surface area is

   ,

   where D(x, y) is the projection of the surface S onto 

   the xy-plane.

 

  • Mass of a Surface
      

   where μ(x, y, z) is the mass per unit area (density function).

 

  • Center of Mass of a Shell

      

  are the first moment about the coordinate plane 

  x = 0, y = 0, z = 0, respective. μ(x, y, z) is the density 

  function.

 

  • Moments of Inertia about the xy-plane (or z = 0), yz-plane (x = 0), and xz-plane (y = 0)

      

  • Moments of Inertia about the x-axis, y-axis, and z-axis

      

  • Volume of a Solid Bounded by a Closed Surface

      

  • Gravitational Force

      

   where m is a mass at a point 〈x0, y0, z0〉 outside the 

   surface,

       

   μ(x, y, z) is the density function, and G is gravitational 

   constant.

 

  • Pressure Force

      

   where the pressureacts on the surface

   given by the position vector.

 

  • Fluid Flux (across the surface S)

     

   whereis the fluid velocity.

 

  • Mass Flux (across the surface S)

     

   whereis the vector field, ρ is the fluid density.

 

  • Surface Charge

     

   where σ(x, y) is the surface charge density.

 

  • Gauss’ Law

   The electric flux through any closed surface is 

   proportional to the charge Q enclosed by the surface

      ,

   where

   Φ is the electric flux,

   is the magnitude of the electric field strength,

   is permittivity of free space.

 

Sumber
Labels: Mathematician

Thanks for reading Integral Calculus - Surface Integral 1 . Please share...!

Back To Top