Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Integral Calculus - Triple Integral 1


Triple Integral 1

 

  • Change of Variables

   

is the jacobian of the transformations (x, y, z) → (u, v, w), and S is the pullback of G which can be computed by x = x(u, v, w), y = y(u, v, w),  z = z(u, v, w) into the definition of G.

 

  • Triple Integrals in Cylindrical Coodinates

   The differential dxdydz for cylindrical coordinates is

       


   Let the solid G is determined as follows:

   (x, y) R, χ1 (x, y) z ≤ χ2 (x, y),

   where R is projection of G onto the xy-plane. Then

      


  Here S is the pullback of G in cylindrical coordinames.

 

   The differential dxdydz for spherical coordinates is

      


   where the solid S is the pullback of G in spherical 

   coordinates. The angle θ ranges 0 to 2π, the angle φ 

   ranges from 0 to π.

 

Figure

 

  • Volume of a Solid

      

  • Volume in Cylindrical Coordinates

      

  • Volume in Spherical Coordinates

       

  • Mass of a Solid

      

   where the solid occupies a region G and its density 

   at a point (x, y, z) is μ (x, y, z).

  • Center of Mass of Solid

      

   Where

      

  are the first moments about the coordinate plane 

  x = 0, y = 0, z = 0, respectively,  μ(x, y,z) is the density 

  function.

 

     

  • Moments of Inertia about the x-axis, y-axis, and z-axis

     

     


 

Sumber
Labels: Mathematician

Thanks for reading Integral Calculus - Triple Integral 1. Please share...!

Back To Top