Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Situs gratis pertama yang direkomendasikan untuk membuat blog adalah Blogger.

Euclidean n-Space – Example

Example 1 Given u = (9,3,4,0,1) and v = (0,3, 2,1,7) compute.

(a)   u 4v
(b)   v u
(c)    u u
(d)   u
(e)    d (u, v)


Solution

There really isn’t much to do here other than use the appropriate definition.

(a)       u – 4v = (9, 3, – 4, 0, 1) – 4 (0, – 3, 2, – 1, 7)
               = (9, 3, – 4, 0, 1) – 4 (0, – 12, – 4, 28)
               = (9, 15, – 12, 4, – 27)

(b)      v u = (0)(9) + (−3)(3) + (2)(−4) + (−1)(0) + (7)(1) = −10

(c)       uu = 92 + 32 + (−4)2 + 02 +12 = 107

(d)

(e)


Example 2 Given u = (−2, 3, 1, 1) and v = (7, 1, 4, 2) verify the Cauchy-Schwarz inequality and the Triangle Inequality.

Solution


Let’s first verify the Cauchy-Schwarz inequality. To do this we need to following quantities.

uv = – 14 + 3 – 4 + 2 = – 13


Now, verify the Cauchy-Schwarz inequality.


Sure enough the Cauchy-Schwarz inequality holds true.

To verify the Triangle inequality all we need is,


Now verify the Triangle Inequality.


So, the Triangle Inequality is also verified for this problem.



Example 3 Show that u = (3,0,1,0, 4,1) and v = (−2,5,0, 2,3,18) are orthogonal and verify that the Pythagorean Theorem holds.

Solution

Showing that these two vectors is easy enough.

uv = (3)(−2) + (0)(5) + (1)(0) + (0)(2) + (4)(−3) + (−1)(−18) = 0

So, the Pythagorean Theorem should hold, but let’s verify that. Here’s the sum

u + v = (1,5,1, 2,1,19)

and here’s the square of the norms.

                                    u + v2 = 12 + 52 +12 +22 +12 +(– 19)2 = 393

                                    u2 = 32 + 02 +12 +02 +42 +(– 1)2 = 27

                                    v2 = ( – 2)2 + 52 +02 +22 +( – 3)2 +(– 18)2 = 366

A quick computation then confirms that u + v2 = ‖u2 + ‖v2.



Sumber
Labels: Mathematician

Thanks for reading Euclidean n-Space – Example. Please share...!

Back To Top