1. Diketahui f(π₯) = 8π₯ – 2 dan π(π₯) = π₯2 – π₯ – 6. Fungsi komposisi (f ∘ π)(π₯) adalah ...
Alternatif Pembahasan :
f(π₯) = 8π₯ – 2 dan π(π₯) = π₯2 – π₯ – 6
⦁ (f ∘ π)(π₯) = f(g(π₯))
f(π₯) = 8π₯ – 2 .
f(g(π₯)) = f(π₯2 – π₯ – 6)
= 8(π₯2 – π₯ – 6) – 2
= 8π₯2 – 8π₯ – 48 – 2
= 8π₯2 – 8π₯ – 50
Jawaban: C
2.
Diketahui
fungsi f(π₯) = π₯2 + 4 dan π(π₯) = 2π₯
+ 6. Fungsi komposisi (f ∘ π)(π₯) adalah ...
Alternatif Pembahasan :
f(π₯) = π₯2 + 4 dan π(π₯) = 2π₯ + 6
⦁ (f ∘ π)(π₯) = f(g(π₯))
f(π₯) = π₯2 + 4
f(g(π₯)) = f(2π₯ + 6)
= (2π₯ + 6) – 4
= 4π₯2 + 4π₯ + 1 + 4
= 4π₯2 + 4π₯ + 5
Jawaban: B
Sumber
Thanks for reading Latihan Komposisi Fungsi. Please share...!