Contoh Soal
Jika A – 1 melambangkan invers matriks A dan
AT melambangkan transpose matriks A, dan diketahu,, P = Q – 1 RT.
Maka determinan matriks P sama dengan:
A.
– 2
B.
– 1
C.
0
D.
1
E.
2
Jawab:
∣P∣ =
(7/3 )∙ (– 1/3) (– 11/3) ∙ (1/3) = –
(7/9) – (11/9)
= – (18/9) = – 2.
Jawaban : A
Cara
∣RT∣ = ∣R∣ =
4.5 – 7.2 = 6
∣P∣ = ∣Q – 1∣∣RT∣ = – ⅓ . 6
= – 2.
Contoh Soal
A.
5
B.
15
C.
45
D.
75
E.
100
Jawab:
Determinan x = ad – bc = 5
Determinan 3X = 3a.3d – 3b.3c
= 9ad – 9bc
= 9(ad – bc)
= 9.5 = 45
Jawaban : C
Cara
Determinan 3X = 32 determinan X
= 9.5 =
45
(Pangkat 2 dikarenakan matriks berordo 2).
Contoh Soal
A.
8
B.
12
C.
16
D.
24
E.
32
Jawab:
= a(ei – fh) – b(di –
fg) + c(dh – eg)
= aei – afh – bdi + bfg + cdh – ceg
= 4
= 2a (4ei – 4fh)
– 2b(4di – 4fg) + 2c(4dh – 4eg)
= 8aei – 8afh
– 8bdi + 8bfg + 8cdh – 8ceg
= 8(aei – afh – bdi
+ bfg + cdh – ceg)
= 8 . 4
= 32
Jawaban : E
Contoh Soal
Jika matriksmemenuhi
persamaan A2 + nI = Ma , dan I menyatakan
matriks identitas, maka m2 + n2 = ...
A.
25
B.
20
C.
17
D.
13
E.
10
Jawab:
A2 + nI = mA
4m = 8 = 0 ⟶m = – 2
2m = n – 8
– 4 = n – 8 ⟶ n = 4
m2 + n2 = 4 + 16 = 20
Jawaban : B
Cara
Maka
m = a + d = 2 – 4 = – 2
n = ad – bc = – 8 – ( – 12)
= 4
m2 + n2 = 4 + 16 = 20
Sumber
Labels:
Matematika
Thanks for reading Latihan Matriks - 1. Please share...!