Sistem Persamaan Linier Tiga Variable
Untuk lebih jelanya, ikutolah contoh soal berikut ini:
1.
Tentukanlah himpunan penyelesaian sistem
persamaan linier
Alternatif Pembahasan :
D = (1)(1)(1) +
(–2)(1)(2) + (0)(0)(0) – (0)(1)(2) – (1)(1)(0) – (–2)(0)(1)
D = (1) + (–4) +
(0) – (0) – (0) – (0)
D = 1 – 4 + 0 + 0
+ 0 + 0
D = –3
Dx =
(–3)(1)(1) + (–2)(1)(1) + (0)(1)(0) – (0)(1)(1) – (–3)(1)(0) – (–2)(1)(1)
Dx = (–3)
+ (–2) + (0) – (0) – (0) – (–2)
Dx = –3 –
2 + 0 – 0 – 0 + 2
Dx = –3
Dy =
(1)(1)(1) + (–3)(1)(2) + (0)(0)(1) – (0)(1)(2) – (1)(1)(1) – (–3)(0)(1)
Dy = ( 1)
+ (–6) + (0) – (0) – (1) – (0)
Dy = 1 – 6
+ 0 + 0 – 1 – 0
Dy = –6
Dz =
(1)(1)(1) + (–2)(1)(2) + (–3)(0)(0) – (–3)(1)(2) – (1)(1)(0) – (–2)(0)(1)
Dz = (1) +
(–4) + (0) – (–6) – (0) – (0)
Dz = 1 – 4
+ 0 + 6 – 0 – 0
Dz = 3
Sumber
Thanks for reading Menyelesaikan Persamaan Matriks – 2. Please share...!